Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Biomed Pharmacother ; 164: 114997, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20241696

ABSTRACT

The SARS-CoV-2 pandemic made evident that there are only a few drugs against coronavirus. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety profile. Starting from a list of 116 drug candidates, we used molecular modelling tools to rank the 44 most promising inhibitors. Next, we tested their efficacy as antivirals against α and ß coronaviruses, such as the HCoV-229E and SARS-CoV-2 variants. Four drugs, OSW-1, U18666A, hydroxypropyl-ß-cyclodextrin (HßCD) and phytol, showed in vitro antiviral activity against HCoV-229E and SARS-CoV-2. The mechanism of action of these compounds was studied by transmission electron microscopy and by fusion assays measuring SARS-CoV-2 pseudoviral entry into target cells. Entry was inhibited by HßCD and U18666A, yet only HßCD inhibited SARS-CoV-2 replication in the pulmonary Calu-3 cells. Compared to the other cyclodextrins, ß-cyclodextrins were the most potent inhibitors, which interfered with viral fusion via cholesterol depletion. ß-cyclodextrins also prevented infection in a human nasal epithelium model ex vivo and had a prophylactic effect in the nasal epithelium of hamsters in vivo. All accumulated data point to ß-cyclodextrins as promising broad-spectrum antivirals against different SARS-CoV-2 variants and distant alphacoronaviruses. Given the wide use of ß-cyclodextrins for drug encapsulation and their high safety profile in humans, our results support their clinical testing as prophylactic antivirals.


Subject(s)
COVID-19 , Dermatologic Agents , beta-Cyclodextrins , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , beta-Cyclodextrins/pharmacology , beta-Cyclodextrins/therapeutic use
2.
Infectious Disease Modelling ; 2023.
Article in English | EuropePMC | ID: covidwho-2304862

ABSTRACT

Objectives To determine whether air pollution or changes in SARS-CoV-2 lineages lead to an increase in mortality. Methods Descriptive statistics were used to calculate rates of infection (2020–2021). RT–PCR was used to compare viral loads from October 2020 to February 2021. Next-generation sequencing (NGS) (n = 92) was used to examine and phylogenetically map SARS-CoV-2 lineages. A correlative "air pollution/temperature” index (I) was developed using regression analysis. PM2.5, PM10, O3, NO2, SO2, and CO concentrations were analyzed and compared to the mortality. Results The mortality rate during the last year was ∼32%. Relative SARS-CoV-2 viral loads increased in December 2020 and January 2021. NGS revealed that approximately 80% of SARS-CoV-2 linages were B.1.243 (33.7%), B1.1.222 (11.2%), B.1.1 (9%), B.1 (7%), B.1.1.159 (7%), and B.1.2 (7%). Two periods were analyzed, the prehigh- and high-mortality periods and no significant lineage differences or new lineages were found. Positive correlations of air pollution/temperature index values with mortality were found for IPM2.5 and IPM10. INO2. ISO2, and ICO but not for O3. Using ICO, we developed a model to predict mortality with an estimated variation of ∼±5 deaths per day. Conclusion The mortality rate in the MZG was highly correlated with air pollution indices and not with SARS-CoV-2 lineage.

3.
iScience ; 26(4): 106457, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2276879

ABSTRACT

The elicitation of cross-variant neutralizing antibodies against SARS-CoV-2 represents a major goal for current COVID-19 vaccine strategies. Additionally, natural infection may also contribute to broaden neutralizing responses. To assess the contribution of vaccines and natural infection, we cross-sectionally analyzed plasma neutralization titers of six groups of individuals, organized according to the number of vaccines they received and their SARS-CoV-2 infection history. Two doses of vaccine had a limited capacity to generate cross-neutralizing antibodies against Omicron variants of concern (VOCs) in uninfected individuals, but efficiently synergized with previous natural immunization in convalescent individuals. In contrast, booster dose had a critical impact on broadening the cross-neutralizing response in uninfected individuals, to level similar to hybrid immunity, while still improving cross-neutralizing responses in convalescent individuals. Omicron breakthrough infection improved cross-neutralization of Omicron subvariants in non-previously infected vaccinated individuals. Therefore, ancestral Spike-based immunization, via infection or vaccination, contributes to broaden SARS-CoV-2 humoral immunity.

4.
Microbiol Spectr ; : e0415922, 2023 Mar 21.
Article in English | MEDLINE | ID: covidwho-2272926

ABSTRACT

Most individuals acutely infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit mild symptoms. However, 10 to 20% of those infected develop long-term symptoms, referred to as post-coronavirus disease 2019 (COVID-19) condition (PCC). One hypothesis is that PCC might be exacerbated by viral persistence in tissue sanctuaries. Therefore, the accurate detection and quantification of SARS-CoV-2 are not only necessary for viral load monitoring but also crucial for detecting long-term viral persistence and determining whether viral replication is occurring in tissue reservoirs. In this study, the sensitivity and robustness of reverse transcription (RT)-droplet digital PCR (ddPCR) and RT-quantitative PCR (qPCR) techniques have been compared for the detection and quantification of SARS-CoV-2 genomic and subgenomic RNAs from oropharyngeal swabs taken from confirmed SARS-CoV-2-positive, SARS-CoV-2-exposed, and nonexposed individuals as well as from samples from mice infected with SARS-CoV-2. Our data demonstrated that both techniques presented equivalent results in the mid- and high-viral-load ranges. Additionally, RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, allowing the accurate detection of positive results in individuals exposed to the virus. Overall, these data suggest that RT-ddPCR might be an alternative to RT-qPCR for detecting low viral loads in samples and for assessing viral persistence in samples from individuals with PCC. IMPORTANCE We developed one-step reverse transcription (RT)-droplet digital PCR (ddPCR) protocols to detect SARS-CoV-2 RNA and compared them to the gold-standard RT-quantitative PCR (RT-qPCR) method. RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, while both techniques were equivalent in the mid- and high-viral-load ranges. Overall, these results suggest that RT-ddPCR might be a viable alternative to RT-qPCR when it comes to detecting low viral loads in samples, which is a highly relevant issue for determining viral persistence in as-yet-unknown tissue reservoirs in individuals suffering from post-COVID conditions or long COVID.

5.
Am J Obstet Gynecol ; 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2235755

ABSTRACT

OBJECTIVE: This sequential, prospective meta-analysis (sPMA) sought to identify risk factors among pregnant and postpartum women with COVID-19 for adverse outcomes related to: disease severity, maternal morbidities, neonatal mortality and morbidity, adverse birth outcomes. DATA SOURCES: We prospectively invited study investigators to join the sPMA via professional research networks beginning in March 2020. STUDY ELIGIBILITY CRITERIA: Eligible studies included those recruiting at least 25 consecutive cases of COVID-19 in pregnancy within a defined catchment area. STUDY APPRAISAL AND SYNTHESIS METHODS: We included individual patient data from 21 participating studies. Data quality was assessed, and harmonized variables for risk factors and outcomes were constructed. Duplicate cases were removed. Pooled estimates for the absolute and relative risk of adverse outcomes comparing those with and without each risk factor were generated using a two-stage meta-analysis. RESULTS: We collected data from 33 countries and territories, including 21,977 cases of SARS-CoV-2 infection in pregnancy or postpartum. We found that women with comorbidities (pre-existing diabetes, hypertension, cardiovascular disease) versus those without were at higher risk for COVID-19 severity and pregnancy health outcomes (fetal death, preterm birth, low birthweight). Participants with COVID-19 and HIV were 1.74 times (95% CI: 1.12, 2.71) more likely to be admitted to the ICU. Pregnant women who were underweight before pregnancy were at higher risk of ICU admission (RR 5.53, 95% CI: 2.27, 13.44), ventilation (RR 9.36, 95% CI: 3.87, 22.63), and pregnancy-related death (RR 14.10, 95% CI: 2.83, 70.36). Pre-pregnancy obesity was also a risk factor for severe COVID-19 outcomes including ICU admission (RR 1.81, 95% CI: 1.26,2.60), ventilation (RR 2.05, 95% CI: 1.20,3.51), any critical care (RR 1.89, 95% CI: 1.28,2.77), and pneumonia (RR 1.66, 95% CI: 1.18,2.33). Anemic pregnant women with COVID-19 also had increased risk of ICU admission (RR 1.63, 95% CI: 1.25, 2.11) and death (RR 2.36, 95% CI: 1.15, 4.81). CONCLUSION: We found that pregnant women with comorbidities including diabetes, hypertension, and cardiovascular disease were at increased risk for severe COVID-19-related outcomes, maternal morbidities, and adverse birth outcomes. We also identified several less commonly-known risk factors, including HIV infection, pre-pregnancy underweight, and anemia. Although pregnant women are already considered a high-risk population, special priority for prevention and treatment should be given to pregnant women with these additional risk factors.

6.
BMJ Glob Health ; 8(1)2023 01.
Article in English | MEDLINE | ID: covidwho-2193729

ABSTRACT

INTRODUCTION: Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies. METHODS: We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale. RESULTS: We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women.Pregnant women with SARS-CoV-2 infection-as compared with uninfected pregnant women-were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12).Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias. CONCLUSIONS: This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol.


Subject(s)
COVID-19 , Pregnant Women , Infant, Newborn , Pregnancy , Female , Humans , Prospective Studies , SARS-CoV-2
7.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2126150

ABSTRACT

Rodents are widely used for the development of COVID-19-like animal models, the virological outcome being determined through several laboratory methods reported in the literature. Our objective was to assess the agreement between methods performed on different sample types from 342 rodents experimentally infected with SARS-CoV-2 (289 golden Syrian hamsters and 53 K18-hACE2 mice). Our results showed moderate agreement between methods detecting active viral replication, and that increasing viral loads determined by either RT-qPCR or infectious viral titration corresponded to increasing immunohistochemical scores. The percentage of agreement between methods decreased over experimental time points, and we observed poor agreement between RT-qPCR results and viral titration from oropharyngeal swabs. In conclusion, RT-qPCR and viral titration on tissue homogenates are the most reliable techniques to determine the presence and replication of SARS-CoV-2 in the early and peak phases of infection, and immunohistochemistry is valuable to evaluate viral distribution patterns in the infected tissues.

8.
J Infect Dis ; 226(11): 1913-1923, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2135326

ABSTRACT

BACKGROUND: We analyzed humoral and cellular immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in people with human immunodeficiency virus (HIV; PWH) who had CD4+ T-cell counts <200/µL (HIV<200 group). METHODS: This prospective cohort study included 58 PWH in the HIV<200 group, 36 with CD4+ T-cell counts >500/µL (HIV>500 group), and 33 HIV-1-negative controls (control group). Antibodies against the SARS-CoV-2 spike protein (anti-S immunoglobulin [Ig] G) and the receptor-binding domain (anti-RBD IgG) were quantified before and 4 weeks after the first and the second doses of BNT162b2 or mRNA-1273 (at week 8). Viral neutralization activity and T-cell responses were also determined. RESULTS: At week 8, anti-S/anti-RBD IgG responses increased in all groups (P < .001). Median (interquartile range) anti-S and anti-RBD IgG levels at week 8 were 153.6 (26.4-654.9) and 171.9 (61.8-425.8) binding antibody units (BAU)/mL, respectively, in the HIV<200 group, compared with 245.6 (145-824) and 555.8 (166.4-1751) BAU/mL in the HIV>500 group and 274.7 (193.7-680.4) and 281.6 (181-831.8) BAU/mL in controls (P < .05). Neutralizing capacity and specific T-cell immune responses were absent or reduced in 33% of those in the HIV<200 group, compared with 3.7% in the HIV>500 group (P < .01). CONCLUSIONS: One-third of PWH with CD4+ T-cell counts <200/µL show low anti-S/anti-RBD IgG levels, reduced in vitro neutralization activity against SARS-CoV-2, and no vaccine-induced T cells after receiving coronavirus disease 2019 mRNA vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , HIV Seropositivity , Immune Reconstitution , Humans , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Immunoglobulin G , Prospective Studies , SARS-CoV-2 , Vaccination , Immunity, Humoral , Immunity, Cellular , T-Lymphocytes
9.
PLoS One ; 17(6): e0270150, 2022.
Article in English | MEDLINE | ID: covidwho-2140440

ABSTRACT

We urgently need answers to basic epidemiological questions regarding SARS-CoV-2 infection in pregnant and postpartum women and its effect on their newborns. While many national registries, health facilities, and research groups are collecting relevant data, we need a collaborative and methodologically rigorous approach to better combine these data and address knowledge gaps, especially those related to rare outcomes. We propose that using a sequential, prospective meta-analysis (PMA) is the best approach to generate data for policy- and practice-oriented guidelines. As the pandemic evolves, additional studies identified retrospectively by the steering committee or through living systematic reviews will be invited to participate in this PMA. Investigators can contribute to the PMA by either submitting individual patient data or running standardized code to generate aggregate data estimates. For the primary analysis, we will pool data using two-stage meta-analysis methods. The meta-analyses will be updated as additional data accrue in each contributing study and as additional studies meet study-specific time or data accrual thresholds for sharing. At the time of publication, investigators of 25 studies, including more than 76,000 pregnancies, in 41 countries had agreed to share data for this analysis. Among the included studies, 12 have a contemporaneous comparison group of pregnancies without COVID-19, and four studies include a comparison group of non-pregnant women of reproductive age with COVID-19. Protocols and updates will be maintained publicly. Results will be shared with key stakeholders, including the World Health Organization (WHO) Maternal, Newborn, Child, and Adolescent Health (MNCAH) Research Working Group. Data contributors will share results with local stakeholders. Scientific publications will be published in open-access journals on an ongoing basis.


Subject(s)
COVID-19 , Adolescent , COVID-19/epidemiology , Child , Female , Humans , Infant, Newborn , Meta-Analysis as Topic , Postpartum Period , Pregnancy , Prospective Studies , Retrospective Studies , SARS-CoV-2
10.
Pathogens ; 11(11)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2115977

ABSTRACT

BACKGROUND: Prophylactic vaccination has proven to be the most effective strategy to fight the COVID-19 pandemic. METHODS: This was a prospective observational cohort study involving 30 predominantly antibody deficiency disorders (ADD)-afflicted adult patients on immunoglobulin replacement therapy vaccinated with three doses of the mRNA-1273 COVID-19 vaccine, and 10 healthy controls. Anti-RBD IgG antibodies were determined in plasma samples collected just before the first dose of mRNA-based COVID-19 vaccine and on weeks 4, 8, 24, and 28 following the first vaccination. Patients were categorized based on the levels of anti-RBD antibodies determined on w8 as non-, low-, and responders. Chi-square and Kruskal-Wallis tests were used to see if any variables correlated with humoral response levels. Any adverse effects of the mRNA-based vaccine were also noted. RESULTS: The COVID-19 vaccine was safe and well-tolerated. The humoral response elicited at w8 after vaccination depended on the type of ADD, the type of immunoglobulin deficiency, the presence of granulomatous lymphocytic interstitial lung disease, recent use of immunosuppressive drugs, and the switched memory B cells counts. The third vaccine dose boosted humoral response in previous responders to second dose but seldom in non-responders. CONCLUSIONS: The humoral response of patients with predominant ADD depends mostly on the type of immunodeficiency and on the frequency of B and T cell populations.

11.
iScience ; 25(11): 105455, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2086329

ABSTRACT

Mass vaccination campaigns reduced COVID-19 incidence and severity. Here, we evaluated the immune responses developed in SARS-CoV-2-uninfected patients with predominantly antibody-deficiencies (PAD) after three mRNA-1273 vaccine doses. PAD patients were classified based on their immunodeficiency: unclassified primary antibody-deficiency (unPAD, n = 9), common variable immunodeficiency (CVID, n = 12), combined immunodeficiency (CID, n = 1), and thymoma with immunodeficiency (TID, n = 1). unPAD patients and healthy controls (HCs, n = 10) developed similar vaccine-induced humoral responses after two doses. However, CVID patients showed reduced binding and neutralizing titers compared to HCs. Of interest, these PAD groups showed lower levels of Spike-specific IFN-γ-producing cells. CVID individuals also presented diminished CD8+T cells. CID and TID patients developed cellular but not humoral responses. Although the third vaccine dose boosted humoral responses in most PAD patients, it had limited effect on expanding cellular immunity. Vaccine-induced immune responses in PAD individuals are heterogeneous, and should be immunomonitored to define a personalized therapeutic strategies.

12.
Transbound Emerg Dis ; 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2053047

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic in humans, is able to infect several domestic, captive and wildlife animal species. Since reverse zoonotic transmission to pets has been demonstrated, it is crucial to determine their role in the epidemiology of the disease to prevent further spillover events and major spread of SARS-CoV-2. In the present study, we determined the presence of virus and the seroprevalence to SARS-CoV-2, as well as the levels of neutralizing antibodies (nAbs) against several variants of concern (VOCs) in pets (cats, dogs and ferrets) and stray cats from North-Eastern of Spain. We confirmed that cats and dogs can be infected by different VOCs of SARS-CoV-2 and, together with ferrets, are able to develop nAbs against the ancestral (B.1), Alpha (B.1.1.7), Beta (B.1.315), Delta (B.1.617.2) and Omicron (BA.1) variants, with lower titres against the latest in dogs and cats, but not in ferrets. Although the prevalence of active SARS-CoV-2 infection measured as direct viral RNA detection was low (0.3%), presence of nAbs in pets living in COVID-19-positive households was relatively high (close to 25% in cats, 10% in dogs and 40% in ferrets). It is essential to continue monitoring SARS-CoV-2 infections in these animals due to their frequent contact with human populations, and we cannot discard the probability of a higher animal susceptibility to new potential SARS-CoV-2 VOCs.

13.
Viruses ; 14(9)2022 09 09.
Article in English | MEDLINE | ID: covidwho-2033138

ABSTRACT

A wide range of animal species are susceptible to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Natural and/or experimental infections have been reported in pet, zoo, farmed and wild animals. Interestingly, some SARS-CoV-2 variants, such as B.1.1.7/Alpha, B.1.351/Beta, and B.1.1.529/Omicron, were demonstrated to infect some animal species not susceptible to classical viral variants. The present study aimed to elucidate if goats (Capra aegagrus hircus) are susceptible to the B.1.351/Beta variant. First, an in silico approach was used to predict the affinity between the receptor-binding domain of the spike protein of SARS-CoV-2 B.1.351/Beta variant and angiotensin-converting enzyme 2 from goats. Moreover, we performed an experimental inoculation with this variant in domestic goat and showed evidence of infection. SARS-CoV-2 was detected in nasal swabs and tissues by RT-qPCR and/or immunohistochemistry, and seroneutralisation was confirmed via ELISA and live virus neutralisation assays. However, the viral amount and tissue distribution suggest a low susceptibility of goats to the B.1.351/Beta variant. Therefore, although monitoring livestock is advisable, it is unlikely that goats play a role as SARS-CoV-2 reservoir species, and they are not useful surrogates to study SARS-CoV-2 infection in farmed animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/veterinary , Goats , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
14.
Life Sci Alliance ; 5(12)2022 08 12.
Article in English | MEDLINE | ID: covidwho-1994892

ABSTRACT

SARS-CoV-2 vaccination is the most effective strategy to protect individuals with haematologic malignancies against severe COVID-19, while eliciting limited vaccine responses. We characterized the humoral responses following 3 mo after mRNA-based vaccines in individuals at different plasma-cell disease stages: monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma on first-line therapy (MM), compared with a healthy population. Plasma samples from uninfected MM patients showed lower SARS-CoV-2-specific antibody levels and neutralization capacity compared with MGUS, SMM, and healthy individuals. Importantly, COVID-19 recovered MM individuals presented significantly higher plasma neutralization capacity compared with their uninfected counterparts, highlighting that hybrid immunity elicit stronger immunity even in this immunocompromised population. No differences in the vaccine-induced humoral responses were observed between uninfected MGUS, SMM and healthy individuals. In conclusion, MGUS and SMM patients could be SARS-CoV-2 vaccinated following the vaccine recommendations for the general population, whereas a tailored monitoring of the vaccine-induced immune responses should be considered in uninfected MM patients.


Subject(s)
COVID-19 , Monoclonal Gammopathy of Undetermined Significance , Paraproteinemias , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Monoclonal Gammopathy of Undetermined Significance/pathology , Monoclonal Gammopathy of Undetermined Significance/therapy , SARS-CoV-2 , Vaccination
15.
Front Immunol ; 13: 815041, 2022.
Article in English | MEDLINE | ID: covidwho-1952315

ABSTRACT

The role of T cells in the control of SARS-CoV-2 infection has been underestimated in favor of neutralizing antibodies. However, cellular immunity is essential for long-term viral control and protection from disease severity. To understand T-cell immunity in the absence of antibody generation we focused on a group of SARS-CoV-2 Non-Seroconvertors (NSC) recovered from infection. We performed an immune comparative analysis of SARS-CoV-2 infected individuals stratified by the absence or presence of seroconversion and disease severity. We report high levels of total naïve and low effector CD8+ T cells in NSC. Moreover, reduced levels of T-cell activation monitored by PD-1 and activation-induced markers were observed in the context of functional SARS-CoV-2 T-cell responses. Longitudinal data indicate the stability of the NSC phenotype over three months of follow-up after infection. Together, these data characterized distinctive immunological traits in NSC including skewed cellular distribution, low activation and functional SARS-CoV-2 T-cell responses. This data highlights the value of T-cell immune monitoring in populations with low seroconversion rates in response to SARS-CoV-2 infection and vaccination.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Immunity, Cellular , SARS-CoV-2 , Vaccination
17.
Sci Rep ; 12(1): 640, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1900548

ABSTRACT

COVID-19 pathophysiology is currently not fully understood, reliable prognostic factors remain elusive, and few specific therapeutic strategies have been proposed. In this scenario, availability of biomarkers is a priority. MS-based Proteomics techniques were used to profile the proteome of 81 plasma samples extracted in four consecutive days from 23 hospitalized COVID-19 associated pneumonia patients. Samples from 10 subjects that reached a critical condition during their hospital stay and 10 matched non-severe controls were drawn before the administration of any COVID-19 specific treatment and used to identify potential biomarkers of COVID-19 prognosis. Additionally, we compared the proteome of five patients before and after glucocorticoids and tocilizumab treatment, to assess the changes induced by the therapy on our selected candidates. Forty-two proteins were differentially expressed between patients' evolution groups at 10% FDR. Twelve proteins showed lower levels in critical patients (fold-changes 1.20-3.58), of which OAS3 and COG5 found their expression increased after COVID-19 specific therapy. Most of the 30 proteins over-expressed in critical patients (fold-changes 1.17-4.43) were linked to inflammation, coagulation, lipids metabolism, complement or immunoglobulins, and a third of them decreased their expression after treatment. We propose a set of candidate proteins for biomarkers of COVID-19 prognosis at the time of hospital admission. The study design employed is distinctive from previous works and aimed to optimize the chances of the candidates to be validated in confirmatory studies and, eventually, to play a useful role in the clinical practice.


Subject(s)
Blood Proteins , COVID-19/blood , COVID-19/diagnosis , Hospitalization , Aged , Aged, 80 and over , Biomarkers/blood , Disease Progression , Female , Humans , Male , Mass Spectrometry , Middle Aged , Prospective Studies , Proteome
18.
Front Microbiol ; 13: 840757, 2022.
Article in English | MEDLINE | ID: covidwho-1862623

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) may display enhanced transmissibility, more severity and/or immune evasion; however, the pathogenesis of these new VOCs in experimental SARS-CoV-2 models or the potential infection of other animal species is not completely understood. Here we infected K18-hACE2 transgenic mice with B.1, B.1.351/Beta, B.1.617.2/Delta and BA.1.1/Omicron isolates and demonstrated heterogeneous infectivity and pathogenesis. B.1.351/Beta variant was the most pathogenic, while BA.1.1/Omicron led to lower viral RNA in the absence of major visible clinical signs. In parallel, we infected wildtype (WT) mice and confirmed that, contrary to B.1 and B.1.617.2/Delta, B.1.351/Beta and BA.1.1/Omicron can infect them. Infection in WT mice coursed without major clinical signs and viral RNA was transient and undetectable in the lungs by day 7 post-infection. In silico modeling supported these findings by predicting B.1.351/Beta receptor binding domain (RBD) mutations result in an increased affinity for both human and murine ACE2 receptors, while BA.1/Omicron RBD mutations only show increased affinity for murine ACE2.

19.
Age Ageing ; 51(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1860799

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccination is the most effective strategy to protect older residents of long-term care facilities (LTCF) against severe COVID-19, but primary vaccine responses are less effective in older adults. Here, we characterised the humoral responses of institutionalised seniors 3 months after they had received the mRNA/BNT162b2 vaccine. METHODS: plasma levels of SARS-CoV-2-specific total IgG, IgM and IgA antibodies were measured before and 3 months after vaccination in older residents of LTCF. Neutralisation capacity was assessed in a pseudovirus neutralisation assay against the original WH1 and later B.1.617.2/Delta variants. A group of younger adults was used as a reference group. RESULTS: three months after vaccination, uninfected older adults presented reduced SARS-CoV-2-specific IgG levels and a significantly lower neutralisation capacity against the WH1 and Delta variants compared with vaccinated uninfected younger individuals. In contrast, COVID-19-recovered older adults showed significantly higher SARS-CoV-2-specific IgG levels after vaccination than their younger counterparts, whereas showing similar neutralisation activity against the WH1 virus and an increased neutralisation capacity against the Delta variant. Although, similarly to younger individuals, previously infected older adults elicit potent cross-reactive immune responses, higher quantities of SARS-CoV-2-specific IgG antibodies are required to reach the same neutralisation levels. CONCLUSIONS: although hybrid immunity seems to be active in previously infected older adults 3 months after mRNA/BNT162b2 vaccination, humoral immune responses are diminished in COVID-19 uninfected but vaccinated older residents of LTCF. These results suggest that a vaccine booster dose should be prioritised for this particularly vulnerable population.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Long-Term Care , RNA, Messenger , Vaccination
20.
Front Immunol ; 13: 860215, 2022.
Article in English | MEDLINE | ID: covidwho-1847172

ABSTRACT

Background: Evidence on the determinants of the magnitude of humoral responses and neutralizing titers in individuals with mild COVID-19 is scarce. Methods: In this cohort study of mild COVID-19 patients, we assessed viral load (VL) by RT-qPCR at two/three time points during acute infection, and anti-SARS-CoV-2 antibodies by ELISA and plasma neutralizing responses using a pseudovirus assay at day 60. Results: Seventy-one individuals (65% female, median 42 years old) were recruited and grouped into high viral load (VL) >7.5 Log10 copies/mL (n=20), low, VL ≤7.5 Log10 copies/mL (n=22), or as Non-early seroconverters with a positive PCR (n=20), and healthy individuals with a negative PCR (n=9). Individuals with high or low VL showed similar titers of total neutralizing antibodies at day 60, irrespective of maximal VL or viral dynamics. Non-early seroconverters had lower antibody titers on day 60, albeit similar neutralizing activity as the groups with high or low VL. Longer symptom duration and older age were independently associated with increased humoral responses. Conclusions: In mild SARS-CoV-2-infected individuals, the duration of symptoms and age (but not VL) contribute to higher humoral responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Cohort Studies , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL